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Abstract

Recently, there has been an increased interest in machine learning methods that
learn from more than one learning task. Such methods have repeatedly found
to outperform conventional, single-task learning algorithms when learning tasks
are appropriately related. To increase robustness of these approaches, methods
are desirable that can reason about the relatedness of individual learning tasks, in
order to avoid the danger arising from tasks that are unrelated and thus potentially
misleading.

This paper describesthetask-clustering (TC) agorithm. TC clusterslearning tasks
into classes of mutually related tasks. When facing a new thing to learn, TC first
determinesthe most related task cluster, then exploitsinformation selectively from
this task cluster only. An empirical study carried out in a mobile robot domain
shows that TC outperforms its unsel ective counterpart in situations where only a
small number of tasksis relevant.



1 Introduction

One of the exciting new developments in the field of machine learning are algo-
rithmsthat can gradually improve their ability to learn when applied to a sequence
of learning tasks. Motivated by the observation that humans encounter more than
one learning task during their lifetime and that they successfully improve their
ability to learn [2, 20], several researchers have proposed algorithms that are able
to acquire domain-specific knowledge and re-use it in future learning tasks. For
example, in the context of face recognition methods have been developed that
improve the recognition accuracy significantly when learning to recognize a face,
by learning and transferring face-specific invariances acquired through other face
recognition tasks [6, 16]. Similar resultsin the context of object recognition, robot
navigation and chess are reported in [31].

Technically speaking, theunderlyinglearning problem can be stated asfollows.
Given

1. training data for the current learning task,
2. training datafor V other, previous learning tasks, and
3. aperformance measure

find a hypothesis which maximizes the performance in the current (the N +1-th)
learning task. Notice that item 2 in this list, the data of previous learning tasks
(called support data or support tasks), does not appear in the usual formulation of
machine learning problems. Thisis because support data might only be indirectly
related, eg., carry different class labels. To utilize this data, mechanisms are
required that can acquire and re-use domain-specific knowledge in order to guide
the generalization in a knowledgeable way. To date, there is available a variety of
strategies for the transfer of domain-specific knowledge across multiple learning
tasks:

¢ learning interna representations for artificial neural networks, eg., [1, 5, 9,
22, 23, 25, 26, 29, 27],

e learning distance metrics, eg., [4, 18, 33],
e learning to re-represent the data, eg., [14, 33],
e learning invariancesin classification, e.g., [6, 16, 31],

e learning agorithmic parameters and choosing algorithms, e.g., [24, 30, 35],
and



1. For each pair of support tasksn and m: Compute the performance gain for
task n, if knowledge is transferred from task m.

2. Arrange dl tasksinto a small number of clusters by maximizing the perfor-
mance gain within each task cluster.

3. If a new task arrives, determine the most similar task cluster. Selectively
transfer knowledge from that task cluster only.

Table 1: TC: The general scheme for task clustering.

e learning domain models, e.g., [15, 21, 31].

Many of these approaches have been demonstrated to reduce the samplecompl exity,
given that the number of available support tasks V issufficiently large and, equally
importantly, that they are appropriately related. What it means for tasks to be
related is currently not very well understood.

Therelatedness of learning tasks cannot be seen independently of the particul ar
learning algorithm. Two tasksthat might be appropriately related for onealgorithm
may well be unrelated for another. For support tasksto improve the generalization
accuracy, one has to provide a set of learning tasks that are known to be appropri-
ately related with respect to the learning agorithm. This places a burden on the
programmer, as he/she has to be knowledgeable about the learning algorithm and
the relation of the learning tasks. To wesken this requirement, it is desirable to
design algorithms that can discover the relation between multiple learning tasks,
so that when a new task arrives they can identify the most strongly related tasks
and use only those for the transfer of knowledge.

This paper describes the TC (task clustering) algorithm. TC transfers knowl-
edge selectively. The general principleisoutlined in Table 1. To impose structure
on the space of learning tasks, tasks are grouped into clusters of related tasks.
Relatedness is defined as the effect of transferring domain knowledge from one
learning task to another: The more the performance in task » improves through
knowledge transferred from task m, the more related they are (Step 1). Based on
the performance gain, Step 2 clusters the tasks into bins, so that within each bin
the relatedness is maximal. As a result, tasks for which the transfer mechanism
produces the most mutual leverage are grouped together. When a new task arrives



(Step 3), the agorithm in Table 1 first determines the most related task cluster. It
then transfers knowledge only from this single cluste—other task clusters are not
employed.

The TC implementation presented here instantiates the general scheme shown
in Table 1. Atthelowest level of learning, TC uses K -nearest neighbor (KNN) for
generadization[10, 28]. KNN memorizesall training dataexplicitly andinterpol ates
them at query time. TC transfers knowledge across tasks by adjusting the distance
metric that is used for determining the proximity of data pointsin KNN (see aso
[3, 4, 11, 12, 18, 33]). To determine task relatedness, TC inspects the effect on
the generalization accuracy for each task when using the distance metric that is
optimally adjusted for another task (Step 1). It then clusterstasks so asto maximize
the accuracy gain within each of the clusters (Step 2). Based on the results of the
clustering, TC determines an optimal distance metric for each task cluster. When
anew task arrives (Step 3), TC inspects all distance metrics (one for each cluster)
and picks the one that works best. This clustering strategy enables TC to handle
multiple classes of tasks, each of which is characterized by a different distance
metric.

To elucidate TC in practice, this paper aso reports the results of a series of
experiments carried out in a mobile robot domain. The three key results of this
empirical study are:

1. The sample complexity of KNN can be reduced significantly when the dis-
tance metric islearned from previous, related tasks.

2. TC reliably succeeds in partitioning the task space into (a hierarchy of)
meaningful, related tasks.

3. Selective transfer significantly improves the resultsin cases where only few
support tasksare relevant, yet does not hurt the performance when al support
tasks are appropriately related.

The remainder of this paper is organized as follows. Section 2 describes the
TC algorithm in detail. Empirical results obtained in a mobile robot domain are
described in Section 3. Finally Section 4 discusses some of the strengths and
weaknesses of the approach and outlines open questions.



2 TheTC Algorithm

2.1 Nearest Neighbor

K -nearest neighbor (KNN) isawell-known method for fitting functions[10, 28] —
wewill thereforereview it only briefly here. Supposeonewould liketo approximate
thefunction £ (-) based on afiniteand potentially noisy set of input-output examples
of f. KNN approximates f(-) by searching this set for the k& nearest neighbors and
returns their average output value. More specifically, suppose = is a query point
for which one would like to know the value f(z). KNN first searches the nearest
K datapointsyy, 42, . . ., Yk
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Notice that for di screte output spaces (as is the case in the experiments reported
here) theresult of K N N istruncated.

The generalization properties of KNN depend on the choice of the distance
metric. A popular choiceisthe Euclidean (Lz) distance metric:

disteucia(2, y) \/Z - y ©)

Here the superscript () is used to refer to the i-th component of a vector. Notice
that the Euclidean metric weighs each data dimension equally.

Following theideasin [3, 4, 11, 12, 18, 33], the TC agorithm uses a globally
weighted version of distgygig

disty(z,y) = ¢Z d() (gg(z’) _ y(z’))z' @

Here d (with d() > 0 for al ¢) is a vector of parameters that determine the
relative weight of each input dimension. Obviously, different vectorsd will make
KNN interpolate differently. Thus, the vector d determines how KNN generalizes.
Learning d has been shownempirically to be an effective way to transfer knowledge
across multiplelearning tasks [4, 33].




2.2 Determining the Optimal Distance Metric

Each task (or each set of tasks, as discussed bel ow) possesses an optimal distance
metric. An optimal metric is one that, given a finite sample set, minimizes the
error on future data, assuming that all dataiis generated using the same (unknown)
probability distribution. Strictly speaking, to estimate the optimal d one has to
estimate the generalization error on future data, and adjust d to minimizethiserror.

Sincein practice thiserror cannot be computed exactly, TC usesa slightly dif-
ferent criterion for determining d. Given aset of training examples, TC minimizes
the distance between examples that bel ong to the same class, and at the sametime
maximizes the distance between examples that belong to different ones. In other
words, d is obtained by minimizing the following expression:

E(d) = Z Ogy disty(z, y) 5)
where |
_ 1 iff(z)=fly)
%oy = { “1if f(2) £ F() ©

Here each component d(*) is constrained to liein [0.01, 1] for all i.! Let
d* = agminE(d) (7
d

denote the parameter vector that minimizes F/, henceforth called F-optimal or
task-optimal. Let dist* be the corresponding optimal distance metric. By mini-
mizing the infra-class distance (distq(x, y) when f(z) = f(y)) and simultaneously
maximizing the inter-class distance (distq(X, y) when f(z) # f(y)), dist* focuses
on the relevant input dimensions for that particular learning task. Since £(d) is
monotonicin d, d* can be found using gradient descent.

Noticethat d can be optimized simultaneously for multiplelearning tasks. Let
A C{1,2,...N} denote a subset of the support tasks. Then

dy = agmin)_ E,(d) (8)
neA

isthe E-optimal parameter vector and dist; the corresponding distance metric for
the task set A. The subscript » in (8) indicates that F,, (d) is computed using the
training data of the n-th learning task.

YIn principle, it suffices to bound d*) below by 0. In practice, however, the data set-optimal d
often considersonly an extremely small number of input dimensionsthat happento be discriminative
for the training set. This is particularly the case when the input space is high-dimensional and
training datais scarce (asis the casein most of our experiments). To prevent this type over-fitting, it
is beneficial to constrain d'*) to liein someinterval that does not include 0.



2.3 Clustering Tasks

Following Steps 1 and 2 in Table 1, TC arranges the different learning tasks
into a digoint set of task clusters. The incentive to do so is the expected gain
of generalization accuracy when a task uses another task’s F-optimal distance
function. More specifically, TC generates the task transfer matrix

¢ = (Cn,m) (9)

which hasan entry ¢, ,,, for each pair of learning tasks» and m. Thevduec, , is
the expected generalization accuracy for task » whenusing m’'s F/-optimal distance
metric dist;,. Each element ¢, ,,, iscomputed by cross-validation as follows:

1. Firstly, the E-optimal distance metric dist;, for task m is determined by
minimizing £, (d).

2. Secondly, nearest neighbor is applied to task n using dist;,,. To estimate the
generalization accuracy, the sample set of the n-th support task isrepeatedly
split into atraining and the testing set. ¢, ,, is measured using the test set,
averaged over al splits.

Let A1 ... Ar denote adisjoint decomposition of al support tasksinto T’ clusters,
ie, AW Ao ---wAr = {1,..., N}. Thefunctiona J

1= ivy

k=1n€A;

1

A 2 con (10

meEA¢

measures the averaged estimated generalization accuracy that is obtained when
each support task n € A; uses the optimal distance metrics of all other tasks
m € A, inits cluster. Hence, maximizing .J clusters tasks in such a way that
the averaged generalization accuracy is maximal, assuming that distance metric
are transferred within each cluster but not across them. Notice that each of the T’
clusters defines an F-optimal distance metric

dy, = agmin Y E,(d). (11)
d  ned,

which is obtained by minimizing F 4, (cf. (8)). These T’ distance metrics—one
for each task cluster—form the basisfor the sel ective transfer described in the next

section.
It remains to be discussed how to maximize .J. In general, optimizing a
functional .J defined over apairwise cost matrix isawell-understood combinatorial
data clustering problem for which various algorithmsexist (see for example[7, 13]
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and references therein). In all our experiments, the set of support tasks N was
sufficiently small sothat the globally optimal solutioncould becomputed explicitly.
For larger NV incomplete methods must be applied.

2.4 Sdlective Transfer

Each task cluster defines an F-optimal distance metric. By optimizing and using
asingle metric for all tasks in a cluster, knowledge is transferred within each task
cluster.

Of particular interest in this paper are situationsin which a new learning task
arrives that may be related to previous learning tasks. In principal, there are two
strategies to relate a new learning task to the set of existing ones.

1. Non-incremental: Every time a new task arrives, the set of al tasks (in-
cluding the new one) is re-clustered. To achieve optimal results, this might
require that tasks are clustered after the arrival of every single training ex-
ample, which can be computationally very expensive.

2. Incremental: Instead of repeatedly clustering the task space, one can also
leave the existing clusters unchanged and sort the new task into the most
related task cluster. This strategy is faster, since it avoids the combinato-
rial problem of clustering N tasks. However, task clusters found by the
incrementally approach are not necessarily optimal.

In the current implementation, TC employs both a non-incremental and an incre-
mental strategy for clustering tasks. Once in awhile (when the data collection for
alearning task is finished), TC clusters all tasks into bins as described above. If
an appropriate value for 7" is known, T' clusters are generated. If 7' is unknown,
however, TC builds the complete hierarchy of tasks by clustering the task space
intoT =1,..., N clusters. In theworst case, therewill be atotal of

N
ZT — W (12)
T=1

task clusters, but in our all experiments including those reported below TC gener-
ated much fewer clusters (25 or 27, with N = 12).

When a new task arrives, TC, determines the most related task cluster and
uses that cluster's F-optimal distance metric. At first glance, to determine the
most related cluster one could minimize the n-fold cross-validation error over al
distance metrics for determining the most appropriate one. In our experiments,
we adopted a different strategy that was consistently found to work slightly better.
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To determine the most related task cluster, the TC algorithm maximizes the ratio
between the inter-class and the infra-class distance

—1
r(t) = ( Z distjt(x,y))-( Z distjt(ac,y)) . (13
—1

T,y bay= z,y6ay=1

The value r(¢) divides the distance between instances of different classes by the
distance for instances that fall into the same class. It gives a measure how well
the two classes are separated by a particular distance metric dist; . Thus, when a
new task arrives, TC selects the distance metric dist; that maximizes (), which
it usesfor nearest neighbor generalization.

To summarizethe TC a gorithm, TC transfers knowledge across multiplelearn-
ing tasks by learning a distance metric on some tasks, then using it for nearest
neighbor generalization in others. To focus the transfer on the most related tasks,
TC clusters the support tasks space into sets of related tasks. When facing a new
learning task, its distance metric is transferred from the most related task cluster.

3 Experimental Results

3.1 Setup

The TC algorithm was evaluated empirically using the mobile robot XAVIER
shown in Figure 1. All our experiments employed the color camera (top of the
robot) and the 24 sonar proximity sensors (arranged in a ring around the robot).
The camera was pointed slightly downward.

The practical objective that drove the devel opment of the TC algorithm wasto
design robust and computationally efficient learning a gorithmsthat can be applied
to avariety of perceptual tasks specifically in the context of mobile robot control.
Therefore, we collected nine databases of sonar and camera snapshots of persons,
landmarks, objects, and locations. Each database consisted of 100 snapshots (color
camera images and sonar scans), examples of which are shown in Figures 2 and
3. Thefirst four datasets were constructed with a particular person somewhere in
front of therobot. Different personswore different clothes, sothat their recognition
involved spotting certain colors. The next two databases contained generic sensor
readings when the robot was in the [aboratory or in the hallway, respectively. The
seventh database contained images and sonar scans of a bluetrash bin, and thefina
two databases consisted of snapshots of situations where the robot was facing an
open and a closed door, respectively. Figure 3 illustrates some of the variationsin
thelatter two database. When collecting the data, no attention was paid asto where

8



color camera
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bump detectors

Figure 1: Themobilerobot XAVIER.

intheimage and how far away aperson or alandmark occured. To keep the size of
the data manageabl e, we down-sampled each image to a 10 by 10 matrix of RGB
color tripletsasshownin Figure4. In all the experimentsreported bel ow, snapshots
were represented by 300 values along with the 24 sonar scans, normalized to the
unit interval.

To test TC under different conditions, we defined two families of 13 learning
tasks. Task family 73 which is described in Table 2 consisted of various tasks
involving the recognition of people, landmarks and locations. For reasons given
below (Sect. 3.5), we used the thirteenth of these tasks, the recognition of open
versus closed doors, as the testing task (i.e., as the N41-th learning task)—the
other twelve tasks were used as support tasks.

Sinceall tasksin 77 are somewhat similar (they are based on the same sensors
and they all addresstherecognition of similar features), we a so assembled asecond
family of 13 tasks. Task family 7, consisted of

(a) tasks?2, 4,5, and 6 from task family 77 (see Table 2),

(b) the same four tasks, but this time the input dimensions were permuted ran-



(a) person 1 (Joseph) (b) person 2 (Sean)

(d) person 4 (Sebastian)

(f) hallway (Wean 53xx)

(h) open door

(i) closed door

Figure 2: Examples of the nine databases (image and sonar scan).
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(a) open door (b) closed door

Figure 3: Variationsin the data.

domly (all using the same permutation). These resulting tasks are called 2/,
4,5,and 6,

(c) asecond, permuted version of tasks 2, 4, 5, and 6, but this time each tasks
was permuted differently. Thesetasksare caled 27, 47, 5", and 6”, and

(d) thetesting task 13 in Table 2, which was chosen to facilitate the comparison
of the results obtained for both task families.

Task family 7, thus, contained only four tasks that were potentially related to the
testing tasks. Four other tasks were mutually related but unrelated to task 13, and
four tasks were neither related to task 13, nor mutually related. As we will see
below, unselective transfer can suffer from such unrelated tasks.

When clustering tasks (Sect. 2.3), each value ¢,,,,, was estimated using 100-
fold cross-validation with atraining set of 5 examples per dataset and a testing set
of 95 examples (per dataset). The distance metric (Sect. 2.2) was optimized by
gradient descent, which was iterated for 100 steps using a step-size of 0.1 and a
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Figure 4: Down-samplingimages to 10 by 10 red/green/blue values.

momentum of 0.9. Convergence, however, was consi stently observed much earlier
(often after 6 epochs). The results were not sensitive to these learning parameters.
We also did not observe over-fitting, neither for the tasks that the distance metrics
were optimized for, nor for any other task (such as the test task 13). The latter
observation crucialy depended on the existence of the bounds [0.01, 1] for the
distance parameters d(9). In the absence of such bounds, the performance on the
training task increased only slightly, while it usually decreased significantly for
any other task. All experimental results reported below are test set results (i.e,
performance wasmeasured for datapointsthat were not part of atraining set). They
are al averaged over 100 experiments using different sets of training examples. To
illustratethe effect of transfer acrosstasks, wewill comparethe F-optimal distance
metric with the equally-weighted Euclidean distance metric, which serves as the
uninformed default metric in the absence of support tasks. Whenever appropriate,
the diagrams a so show 95% confidence bars for the true value. All performance
graphs show the generalization accuracy (testing set accuracy) for the testing task
13.

3.2 Non-Sdective Transfer

To elucidate the benefit and the limits of regular, unselective transfer, we first
conducted experiments using all support tasks for computing the £-optimal dis-
tance metric. Unselective transfer can be understood as a special case of the TC
algorithm in which the number of clusters 7" is set to 1.

Thefirst key empirical result of thispaper isshownin Figure5. Thethin curve
indiagram 5ashowsthe generalization accuracy of the equally-weighted Euclidean
distance metricfor thetesting task asafunction of the number of training examples.
This curve illustrates the accuracy of nearest neighbor in the absence of support
tasks. The thick curve depicts the generalization accuracy using the £-optimal
distance metric for al 12 support tasks. As can be seen from these graphs, the £-
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data set

Joseph | Sean| Lisa| Seb. lab hallway| trashbin |open|closed
(no door) (in hallway)| door | door

1. Joseph/Sean + —
2. Joseph/Lisa + —
3. Joseph/Sebastian + —
4. Sean/Lisa + | -
5. Sean/Sebastian + —
6. Lisa/Sebastian + | -
7. Joseph/trash bin + —
8. Sean/trash bin + —
9. Lisaltrash bin + —

10. hallway with/
without trash bin + -

11. lab/hallway + —
12. door/no door + — —

| 13. door open/closed| | | | | | | | + | — |

Table 2: Task family 71. Thefirst twelve tasks are support tasks, the thirteenth the
testing task.

optimal distance metric showssignificantly better resultsthan the equally-weighted
metric, illustrating the benefit of transferring knowledge across tasks.
There are two ways to quantify these results.

1. Relative generalization accuracy. The generalization error averaged over
different number training examples is shown in Figure 5b. The F-optimal
distance metric infers an average error of 8.1%, which isonly 50.3% of that
of the equally-weighted distance metric (which is 16.0%). So for a fixed
number of training examples one can expect the F-optimal distance metric
to cut the error roughly in half.

2. Redativesamplecomplexity. The second quantity measuresthereductionin
sample complexity. Figure 5¢ shows the result of statistica comparisons of
the generalization accuracies for the equally-weighted versus the £ -optimal
metric, using different number of training examples. In the white region,

13



71, unsdlective transfer 50%
45%
40%
‘é 35%
g 30%
(a) generalization error gz
. . . = 20%
equally weighted metric (thin) 5 1000
vs. £-optimal metric (bold) “ o
5%
0% 10 20 30 40 50 60 70 80
training examples
50% T
45% !
40% :
35% :
5 30% |
(b) average generalization error 5 0 !
g 20% 16.% !
15% :
10% 8.1% ! 6.2%
5% :
0% none all best possible
support tasks
SAMPLE COMPLEXITY

(c) sample complexity
equally weighted metric
vs. £-optima metric

20

equally weighted Euclidean metric

0 10 20 30

E-optimal metric

Figure 5: Generalization curves and (b) average generalization error of the testing
task. (c) Statistical comparison of this error for the equally-weighted and the F-
optimal distance metric with varying numbers of training examples. In the weight
(grey) area the equally-weighted (F-optimal) distance metric is superior a the
95% confidence level. In the dark region between both methods generalize about
equaly well.
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20

equally weighted Euclidean metric
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Figure6: Unselectivetransfer intask family 7,. Noticethat the £/-optimal distance
metric is only slightly better than the equally-weighted metric.
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the equally-weighted distance metric outperforms the F-optimal one with
at least 95% confidence. In the large grey version the oppositeis the case.
In between, both methods work about equally well and their generalization
accuracies did not differ significantly (at the 95% level). Notice that, on
average, the F-optimal distance metric uses only 28.4% of the number
of training examples that are required when using the equally-weighted
Euclidean metric. For example, the average generalization accuracy of
the F/-optimal distance metric applied to 10 training examples is about the
same as that of the Euclidean distance metric when 40 training examples
are available. It is interesting to notice that the boundary in Figure 5c is
approximately linear. This observation suggeststhat the reductionin sample
complexity depends only weakly on the actual number of training examples.

To summarize, the generalization error when using the F-optimal distance metric
is only 50.3% of that inferred by the equally-weighted Euclidean metric, and it
requires only 28.4% of the samples that are required when using the equally-
weighted metric for reaching a certain level of generalization accuracy. These
results apply to task family 73.

The positive impact of the knowledge transfer depends crucially on the fact
that the support tasks are sufficiently related to the test task. Task family 7>, in
which the majority of tasks is unrelated, fails to produce similar effects. As can
be seen in Figure 6, the F-optimal distance metric is only slightly better than the
equally-weighted counterpart. In particular, the generalization error is reduced to
91.2%, and the sample complexity is reduced to 86.6%, whichis clearly less of an
improvement than the corresponding values for 77 (50.3% and 28.4%). Aswill be
shown in the next sections, by selectively transferring knowledge from the right
cluster of tasks can improve these results grestly.

3.3 Clustering Tasks

Figure 7 shows a normalized version of the transfer matrix (c,, ,,,) for each task
family. Each row depicts how a particular task » (including the testing task)
benefits from knowledge transferred from task m. White boxes indicate that the
generalization accuracy of task » improves when the F-optimal distance metric
of task m is used instead of the equally-weighted distance metric. Black boxes
indicate that the opposite is the case, meaning that tasks are “anti-related.” The
size of the box visualizes the magnitude of the effect.

In task family 71, most tasks are either related to the testing task or unrelated,
but none of themisnotably anti-related (first row in Figure 7a). Thediagramfor the
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(a) task transfer matrix (b) task transfer matrix
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test 1 2 3 4 5 6 7 8 9 10 11 12 test 2 4 5 6 2 4 5 6 2" 4 5 6"

Figure 7: Task transfer matrix (¢, ,,,) for (8) task family 71 and (b) task family 7.
White values show indicate that the error in task » is reduced when the F-optimal
distance metric of task m is used. Black values indicate the opposite: tasks are
anti-related. Therelation of theindividual tasksto thetesting tasksisal so depicted.

more interesting task family 7, showsthat sometasks, in particular 2/, 2”, and 4”,
are anti-related to thetesting task. In other words, using their respective F-optimal
distance metrics will hurt the performance in the testing tasks. However, Figure
7a aso shows that the non-permuted tasks 2, 3, 4, and 6 are indeed well-related
to the testing task, showing that there exists the opportunity for synergy through
knowledge transfer.

Figures 8 and 9 show the different clusters, found for both task families using
different values for T'. The task hierarchy for task family 7, which is depicted
in Figure 9, illustrates the second key result of the empirical study: TC manages
to discover meaningful tasks clusters. Early on in Figure 9, starting with 7" = 3
clusters, the two major task families that use the same encoding ({2, 4, 5, 6} and
{2/,4 5, 6'}) are grouped together. For example, for 7'=4 partitionsTC generates
the following task clusters: {2,4,5,6},{2,4,5,6'},{2",4",6"},{5'}. Here
J=82.6%. For comparison, the worst partitioning with 7T=4 groups tasks into
the following bins: {2,5,5"},{4,5,4,2" 6"}, {6,2',4"}, {6} with J=77.6%.
When T > 4 4l three different task types are clustered into separate clusters.
Thisfinding illustrates that TC indeed manages to find meaningful clustersin 72,
hence to discover the structure that inherently exists for the different tasks. A
second interesting result depicted in Figure 9 isthat TC with 7" = 6 groups exactly
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level task hierarchy T, Jbest  IbestIworst

T=1 {1,2,3,4,5,6,7,8,9,10,11,12} 77.28%  0.00%
T=2 {1,2,3,4,5,6,12} {7,8,9,10,11} 79.26% 2.18%
T=3 {2,4,9} {1,2,3,5,6,10,12} {7.8.11} 80.22% 3.16%
T=4 {1,3,4.,5,6} 80.96% 3.82%
T=5 {10,11,12} 81.47% 4.14%
T=6 {11,12} 81.89% 4.14%
T=7 {14 {3,5,6} 82.24% 3.83%
T=8 {7‘,'8} 82.57% 3.45%
T=9 {3,4,6} 82.86% 2.76%
T=10 {2‘,'9} 83.13% 2.05%
T=11 {3,6} 83.30% 1.20%
Y Y Y VY vV
T=12 2y {9} {1} {38 {6} {4} {5} {10} {11} {12} {7} {8} 83.33% 0.00%

tasks not
involving peopl%

Figure 8: The task hierarchy for task family 71. The hierarchy is obtained by
clustering the task space using different numbers of clustersT’. The right part of
the diagram depicts the corresponding value for ./, and the difference between the
best and the worst partitioning.

those tasks together that rely on the same input encoding. Here the clusters are
{2,4,5,6},{2,4,5,6'}, {2}, {4}, {5}, and {6"}. In task family 71, where
the differences between different tasks are more subtle, it is interesting to note
that the tasks involving the recognition of people form the most similar subgroup
(particularly those involving two different people, cf. Figure 7a). When 7" > 4,
those tasks that involve the recognition of a person (1 to 9) and than those that do
not (10,11,12) are always arranged in different clusters.

3.4 SdectiveTransfer

Figures 10 and 11 summarize the results obtained using the TC agorithm in task
family 7o usingT = 3and T' = 4 clusters. Notice that these results can directly be
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level task hierarchy T, Jbest  IbestIworst

T=1 {2,45,6,2',4' 56, 2",4"5",6"} 76.89%  0.00%
T=2 2,456,451 {2.45,6,2,6" 79.49%  2.51%
- Ta
T=3 {4",5",6"} 81.41% 4.22%
T=4 {246 82.59% 5.03%
T=5 83.74% 5.67%
T=6 {24567 84.63%  5.85%
T=7 {2,1{5,6} 85.23%  5.52%
12 24,67 85.84%  5.09%
T=9 {2,4,6} 86.04%  4.21%
T=10 {2',6'} 86.25%  3.04%
T=11 {2,6} 86.42% 1.58%
\) A ) Yy v Y
T=12 {2} {6} {4} {5} {5"}{27} {4} {67} {2} {6} {4} {57} 86.60%  0.00%
| regular encoding | | permutation groud I|I permutation gro‘}p |

Figure 9: The task hierarchy for task family 7. Notice that early on, the task
hierarchy separates the three different task types. The only related task cluster,
{2,4,5,6},isidentified when T' > 3 clusters are available.

compared to those shown in Figure 6. The dashed curves in Figures 10a and 11a
and theleft barsin Figures 10b and 11b show for each task cluster the corresponding
generalization accuracies in the test task when the cluster-optimal distance metric
is used. In both experiments, only one of the clusters, namely {2,4,5, 6}, is
appropriately related to the testing task, i.e., leads to results that are better than
those obtained with the equally-weighted distance function. If this were known
in advance, TC would always use this task cluster to adjust the distance metric.
However, thisinformation is not available.

The results obtained with the TC agorithm are shown in Figures 10 and 11
(solid curve in diagrams (a), and right bars in diagrams (b)). Across the board,
TC manages to guess the best task cluster considerably often, hence generalizes
well. In the beginning of learning, the generalization accuracy of TC is slightly
worse than that of the best task cluster, which is due to the fact that with a certain
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T2, T=3 clusters

(a) generalization error
task clusters (dashed)
E-optimal metric (solid)

(b) average generalization error
individual task clusters (left)
and TC (right)
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Figure 10: Selective transfer in task family 7, with 7" = 3 task clusters. The
results are clearly superior to those obtained with unselective transfer. Notice also
the difference between the different task clusters.
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Figure 11: Selective transfer in task family 7, with T' = 4 task clusters.
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7>, al clusters
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Figure 12: Selective transfer in task family 7, using the complete task hierarchy
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71, T=4 clusters
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Figure 13: Selective transfer in task family 7; with T" = 4 task clusters. Here
selective transfer yields about the same results as unselective transfer, since most

tasks are indeed related.
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probability TC picks the wrong task cluster. For example, when 7" = 4 and only
four training examples are given in the test task (one example of an open door,
and one of a closed door), TC picksin 59.0% of our experiments the correct task
cluster {2,4,5,6}. In 24% of al experiments, however, TC selects task cluster
{5"}, in 9% task cluster {2/, 4',5,6'}, and in 8% task cluster {2”,4" 6"}. The
situation changes as more training data arrives. With 20 training examples, TC
correctly guesses the best task cluster in 91% of al experiments, and with 32 or
more patternsit reliably (100%) identifiesthe best cluster. Thisillustratesthat TC,
with some error, manages to identify the most relevant tasks.

When T is unknown, TC uses the complete task hierarchy as a pool of poten-
tially related tasks instead of asinge partitioning with a specific number of clusters
T. Ascan be seen from Figure 12, the task hierarchy for task family 7> containsa
total of 25 task clusters, which consists of 12 single-task clusters, one cluster that
contains al tasks, and 12 other clusters containing more than one task. Results
of applying TC with the complete task hierarchy are depicted in Figure 12. Asto
be expected, the performance if TC when using the whole task hierarchy isworse
than the performance when using T' = 3 or 7' = 4 clusters. However, the results
are still clearly superior to the unselective approach, which is forced to transfer
knowledge from all tasks.

All the performance resultsillustrate the third key result of the empirical study:
Selective transfer is superior to unselective transfer in situations where many tasks
are irrdlevant. For example, if T=3, TC achieves 9.8% average generaization
error in thetest task, if knowledgeistransferred selectively from the support tasks.
Relatively speaking, thisisonly 67.1% of the average error that is being observed
in the unselective approach (which is 14.6%, cf. right bar in Figure 6b), and it
is aso considerably close to the theoretically optimal value (6.2%, cf. right bar
in Figure 5b). The relative improvement in the sample complexity is even more
significant: The sample complexity in thetest set isonly 48.8% when TC transfers
knowledge selectively, when compared to the unsel ective counterpart.

When TC is compared with the equally-weighted distance metric (nearest
neighbor in the absence of support sets), TC with T=3 uses only 41.4% of the
samples to reach the same level of generalization accuracy, and its generalization
accuracy ison average on 60.9% of that inferred by the equally-weighted distance
metric. These results are remarkably close to those that could have been achieved
if one knew in advance which of the 12 support sets were appropriately related.
From the results shown in Figures 10 and 11, it appears that the number of task
clusters T' only weakly impacts the results. In other experiments not shown here
we found thisto be the case as long as 7'>3. For smaller values of 7', the number
of task clustersisinsufficient, and TC's performance degrades to that of theregular
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nearest neighbor with the equally-weighted distance metric.

For the sake of completeness, Figure 13 show the resultsfor TC with T=4in
task family 7;. Recall that most tasks were related in 771, and even the unselective
transfer mechanisms produced satisfactory results. An interesting finding here is
that TCidentifiesclustersof tasksthat significantly differsintheir relatednessto the
testing task, and even though only asmall number of tasksisused to determinethe
F-optimal distance metric, TC generalizes approximately aswell asthe unselective
approach. The latter approach benefits from the fact that it can use more data to
adjust the distance metric.

3.5 Practical Utility of the Results

The ability to learn to recognize people, landmarks, or locations are useful in
the context of robot navigation and human robot interaction. The TC algorithm
has particularly been designed to facilitate the reliable and fast recognition of such
concepts. Inadditionto thesmall the samplecomplexity dueto knowledgetransfer,
TC works very fast in practice, since it relies on nearest neighbor generalization.
Nearest neighbor memorizestraining examples, avoiding the need for long training
times. For efficient retrieval, tree-based agorithms exist that facilitate fast access
of the memorized data (see e.q., [17]).

The particular testing task, the distinction of open and closed doors, is useful
in the context of mobile robot navigation. Figure 14 shows how the XAVIER
robot navigates using an occupancy map approach [19] that has originally been
developed in the RHINO mobile robot project at the University of Bonn [32, 8].
Since occupancy maps assume theworld is static, they cannot handle well failures
that arise from the dynamicsin real-world environments. A typical failuresituation
is shown in Figure 15. Here the door, which was previously open, is suddenly
locked. XAVIER's navigation system detects this failure quite inefficiently: It
moves towards the door and circlesin front of the door until itsinternal occupancy
map is corrected. In practice, this may be quite time consuming, since previous
evidence of the door being open has now to be overridden by the new evidence that
indicates the presence of an obstacle.

To recognize the upcoming plan failure much earlier, the navigation routines
were augmented by thelearned door status recognizer (along with the result of task
12 above: door/no door) [22]. Training examples for the door recognition task are
easily constructed, since plan failures (the robot turns around) are easily detected
post the fact. In[22], it has been shown that an artificial neural network isableto
reliably (100% in more than 30 trials) detect closed doors, enabling the robot to
changeits path accordingly. An exampleisshownin Figure 16. To reducetheratio
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Figure 14: Exampleof the XAVIER
robot leaving a room. The two-
dimensional occupancy map (bird’'s
eye view of the robot's environ-
ment) has been constructed previ-
ously, based on sonar sensor infor-
mation. Bright values correspond to
free space, and dark valuesto occu-
pied regions.

Figure 15: Example of a plan fail-
ure. XAVIER, which find part of
its path blocked, has to correct its
occupancy map before taking a dif-
ferentroute. Thiscorrectionistime-
consuming.

Figure 16: Failure anticipation after
learning to recognize closed doors.
Therobot turnsaround much earlier.
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of false alarms, the robot’s motion direction was only changed if three consecutive
sensor readings indicated the presence of a closed door with high confidence. The
neural network approach, however, suffered from enormous training times (which
also prohibited a systematic evaluation of the approach such as the one that is
presented here). We expect that the TC approach will be much faster and easier to
handlein practice.

4 Discussion

This paper describes an instantiation and first results of a method for the selective
transfer of knowledge across multiple learning tasks. The TC algorithm employs
anearest neighbor algorithm, which transfers knowledge by adjusting the distance
metric in sometaskswhilere-using it in others. To transfer knowledge selectively,
TC clusters tasks into bins of related tasks. Relatedness is defined in the context
of TC's knowledge transfer mechanisms. When facing a new learning task, TC
determines the most related task cluster and selectively transfers knowledge form
this one cluster only. In an experimental comparison conducted in a mobile robot
perceptua domain it was shown that

1. If tasks are appropriately related, TC's transfer mechanisms successfully
reduces the samplecomplexity. For example, intask family 73 TC consumes
only 28.4% of thetraining examplesthat an uninformed distance metric with
equa weights requires.

2. TC's clustering mechanisms manages to discover meaningful task clusters
and to build hierarchies of tasks. For example, in task family 7> TC groups
thethree different task typesinto separate clusters, giventhat 7' > 4 clusters
are available. In 71, tasks that involve the recognition of people always fall
into different clusters than those that do not (10,11,12).

3. If tasks are not appropriately related (task family 73), selectively trans-
ferring knowledge from the most related task cluster improves the results
significantly. For example, in task family 7, in which most tasks are not ap-
propriately related to the testing task, selective transfer requires only 42.0%
of the amount of training data required by the corresponding unselective
transfer mechanisms.

A key assumption made in the TC approach is the existence of groups of tasks
so that all tasks are related within each group. TC also benefits if the appropriate
number of task clustersis known beforehand. TCis particularly appropriate when
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there is a small, known number of distinct problem categories, and within each
problem category TC's transfer mechanisms successfully reduces the sampling
complexity. Our empirical results provide evidence that TC is somewhat robust
with respect to the choice of the number of task clusters T (TC even managed to
reduce the sample complexity in task family 7> when the complete task hierarchy
was employed which contains al clusters for all possible values of 7'). However,
littleis known for cases where the class boundaries are smoother. In cases where
task boundaries are smoother, smoother arbitration schemes (e.g., weighting the
impact of atask cluster in proportion to »(-)) might be superior.

A second limitation of the current implementation arises from the fact that the
space of al partitionsis searched exhaustively. Clearly, the complexity of exhaus-
tive search prohibitsglobal optimizationfor largevaluesof N andT". However, we
do not view thisasaprincipal limitation of the TC algorithm, since heuristic and/or
stochastic optimization methods are certainly applicable. If learning tasks arrive
one after another, task clusters may also be learned incrementally, by determining
cluster membership when atask arrives. Littleisknown concerning how much the
results presented here depend on thefact that the partitioning always represents the
globa minimumof .J.

In the experiments reported here, TC has been applied to analyze images and
sonar measurements. Comparingimagesand sonar scans pixel-by-pixel iscertainly
not the most effective strategy for analyzing images. This simple encoding has
been chosen mainly because of our interest to rely as little as possible on prior,
domain-specific knowledge. However, TC, asitiscurrently implemented, isunable
to discover dependencies beyond thelevel of individual pixels, sinceit only learns
a distance value for each input dimension. Applying the TC algorithm to more
sophisticated image encodings, and applying algorithms that can discover more
sophisticated commonalities between multiple tasks such as those surveyed in
[34], is subject to ongoing research.

The reader may notice that the general scheme outlined in the very beginning
of this paper (Table 1) may be applicable to other approaches that transfer knowl-
edge across multiple learning tasks. Of course for some approaches this will be
computationally infeasible, since this scheme requiresin the order of N2 compar-
isons, each involving repeated experiments with transfer across tasks. One of the
main limitationsof TC arisesfrom the fact that task clustering is based on pairwise
comparisons. TC will not capture effects of transfer that arise if only three or
more tasks are involved. It remains to be seen whether pairwise comparisons will
prevent TC from finding useful clustersin different application domains. However,
afull evaluation of transfer in all subsets of tasks requirestime exponentially inthe
number of tasks N, whereas TC time requirements are quadratic. It even appears
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feasible to design incremental strategies whose time requirements are linearly in
N - T, which will be more efficient than the current implementation of TCif T'is
small.

Thekey difference of the TC approach to previous approachesliesin TC's abil-

ity to transfer knowledge selectively. Rather than weighting all previous learning
tasks equally when learning bias for anew one, TC structures the space of learning
tasks and reasons about their relatedness. In the light of the experimental find-
ings, we conjecture that the TC approach scales much better to diverse application
domains, i.e., domainsin which the learning tasks are not al just of asingletype.
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